首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16777篇
  免费   10篇
  国内免费   2篇
林业   3632篇
农学   1304篇
基础科学   137篇
  2826篇
综合类   724篇
农作物   2101篇
水产渔业   1801篇
畜牧兽医   1268篇
园艺   1112篇
植物保护   1884篇
  2023年   3篇
  2022年   1篇
  2021年   22篇
  2020年   14篇
  2019年   5篇
  2018年   2748篇
  2017年   2706篇
  2016年   1187篇
  2015年   85篇
  2014年   41篇
  2013年   33篇
  2012年   807篇
  2011年   2146篇
  2010年   2110篇
  2009年   1259篇
  2008年   1331篇
  2007年   1601篇
  2006年   61篇
  2005年   132篇
  2004年   116篇
  2003年   170篇
  2002年   71篇
  2001年   26篇
  2000年   46篇
  1999年   3篇
  1997年   2篇
  1995年   2篇
  1993年   12篇
  1992年   7篇
  1990年   3篇
  1989年   6篇
  1988年   11篇
  1987年   3篇
  1986年   1篇
  1977年   5篇
  1976年   1篇
  1975年   1篇
  1972年   2篇
  1969年   2篇
  1968年   4篇
  1967年   2篇
  1965年   1篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
941.
Cultivated tetraploid Gossypium hirsutum L. (Malvaceae) cotton has been characterized as having one flower at a primordia. In a strain (CSH-13) of Gossypium hirsutum cotton, four plants out of 103 had two to three double bolls or twin bolls/plant during 2003–2004 crop season at CICR regional station, Sirsa, Haryana, India. Progeny evaluation in 2004 and 2005 crop seasons indicated that plants raised from seeds harvested from double bolls/twin bolls produced plants bearing double bolls only and plant progeny raised from the seed of single bolls from these mutant plants produced two to three double bolls per plant similar to the parent. Progeny testing revealed that double boll formation is the result of spontaneous mutation and environment does not influence its expression. The mutant is early in maturity by 10–15 days, naked seeded and possesses comparable agronomic characters with normal plants. Another spontaneous mutant of Gossypium hirsutum having more than three appendages originating from primordia.: four bolls one leaf, three bolls one leaf, two bolls two leaves, one boll three leaves were obtained from the population of CISV-13 strain in crop season 2003. These appendage groups have been described as bicolor unit by Clemens Bayer, [Zur Infloreszenzmorphologie der Malvales. Dissertations Botany 212 (1994)] and cluster mutant by Russell and Luther [J Cott Sci 6 (2002) 115]. One to three bolls in a cluster or bicolor unit were observed without formation of seeds and lint. About one-third of the total bolls on the mutant plant were of this type. In progeny testing during 2004 and 2005 crop seasons, this mutant produced plants exclusively with more than three appendages revealing that plants identified in 2003 were due to spontaneous mutation. This mutant was also early and naked seeded. Many of the other characters of the mutant plants were comparable with the wild type plants of the strain. Both the mutants were observed having economic impact due to their better yielding ability as compare to respective parents.  相似文献   
942.
An important environmental and regulatory issue is the protection of human health from potential adverse effects of cumulative exposure to multiple chemicals. Earlier literature suggested restricting inference to specific fixed-ratio rays of interest. Based on appropriate definitions of additivity, single chemical data are used to predict the relationship among the chemicals under the zero-interaction case. Parametric comparisons between the additivity model and the model fit along the fixed-ratio ray(s) are used to detect departure from additivity. Collection of data along reduced fixed-ratio rays, where subsets of chemicals of interest are removed from the mixture and the remaining compounds are at the same relative ratios as considered in the full ray, allow researchers to make inference about the effect of the removed chemicals. Methods for fitting simultaneous confidence bands about the difference between the best fitting model and the model predicted under additivity are developed to identify regions along the rays where significant interactions occur. This general approach is termed the “single chemicals required” (SCR) method of analysis. A second approach, termed “single chemicals not required” (SCNR) method of analysis, is based on underlying assumptions about the parameterization of the response surface. Under general assumptions, polynomial terms for models fit along fixed-ratio rays are associated with interaction terms. Consideration is given to the case where only data along the mixture rays are available. Tests of hypotheses, which consider interactions due to subsets of chemicals, are also developed.  相似文献   
943.

Purpose

As a useful comprehensive index for reflecting nutrient cycling in soils, nitrogen (N) and phosphorus (P) stoichiometry is subject to influences of many external environmental and biological factors. Studies on such influences were limited, and the influential mechanism remains unclear. The purpose of this research is to investigate soil N and P stoichiometric variations and analyze “fertile island” effects of Tamarix chinensis Lour. (T. chinensis) in the coastal wetland of Laizhou Bay in China.

Materials and methods

Soil samples beneath clusters and communities of T. chinensis were collected respectively in July 2012. Amounts of ammonium, nitrate, and available phosphorus in the soil samples were measured through the corresponding standard methods for material measuring.

Results and discussion

In general, there were significant vertical variations in soil N and P stoichiometry beneath clusters and communities of T. chinensis. A downtrend was observed for N and P contents with the increase in soil depth. On the contrary, the N/P ratio revealed a trend of going up first and then dropping off along with the increase of the soil depth. Comparatively, the horizontal variations in the soil N and P stoichiometry beneath a single cluster of T. chinensis were greater in the topsoil than those in the subsoil. The N and P contents gradually decreased from the canopy center to the outside. On the contrary, an opposite trend was found for the N/P ratio. For the horizontal variations beneath T. chinensis communities, there were no significant differences for either N and P contents or N/P ratios.

Conclusions

Similar to the ecosystems in arid and semi-arid areas, vegetations in many semi-humid areas could also form fertile islands and exert significant influences on the soil nutrient cycle. The formation of fertile islands beneath a single cluster of T. chinensis could have significant influence on soil N and P stoichiometry. Under the influence of fertile islands beneath T. chinensis, the limiting element of the biogeochemical processes in the coastal wetland of Laizhou Bay might change from N to P. However, the influences of fertile island effects on soil N and P stoichiometry beneath T. chinensis communities were relatively small, illustrating that the influences of fertile island effects was not significant at the community level. Thus, the impacts of environmental factors on soil N and P stoichiometry might be greater than that of the fertile island effects in the wetland on a larger scale.
  相似文献   
944.

Purpose

The variation in soil microbial community patterns is primarily influenced by ecological processes associated with spatial distance and environmental heterogeneities. However, the relative importance of these processes in determining the patterns of soil microbial biodiversity in different successional forests remains unclear.

Materials and methods

Based on the species data from denaturing gradient gel electrophoresis (DGGE) analysis, we described the composition and beta diversity of ammonia-oxidizing archaea (AOA) community, an important functional microbial group in regulating nitrogen cycle, in a middle-succeed stand (60 years of secondary succession) and an undisturbed native stand in a subtropical forest in southern China. The composition pattern was examined using a multi-response permutation procedure (MRPP), and the beta diversity was described using the Sørensen index. The relative influence of edaphic, vegetational, spatial, and topographical factors on AOA composition and beta diversity was assessed by variation partitioning and multiple regression on distance matrices (MRM), respectively.

Results and discussion

We did not find any stand-specific patterns in AOA community composition in the two stands; however, the influential variables were different between the two stands; 7.3 and 4.5 % of the total variation in AOA community composition could be explained by edaphic (i.e., available potassium and total phosphorus) and spatial variables, respectively, in the middle-succeed stand, while 3.7 and 2.8 % of the variation were explained by spatial variable and available phosphorus, respectively, in the native stand. Soil total phosphorus influenced the beta diversity of AOA community most in the middle-succeed stand, while genetic distance of tree species was found to be the most important factor in driving the beta diversity pattern in the native stand.

Conclusions

Soil nutrients influenced the beta diversity of AOA community in the middle-succeed stand more than that in the native stand, while vegetation is more important in the native stand. The substantial unexplained variations were possibly due to the effects of other unmeasured variables. Nevertheless, dispersal process is more important in controlling AOA community composition in the native stand, while processes associated with environmental heterogeneities are more important in the middle-succeed stand in this subtropical forest.
  相似文献   
945.

Purpose

Thaumarchaeota is an ecologically relevant archaeal phylum which may significantly contribute to global nitrogen cycling. Thaumarchaeotal abundance, composition, and activity can be changed by soil pH and pollutants such as toxic metals. This study aims to examine the responses of thaumarchaeotal community to soil pH variation and polycyclic aromatic hydrocarbon (PAH) pollution which may co-occur in agricultural soils.

Materials and methods

Field soil samples were collected from agricultural land impacted by both acidification and PAH contamination. Thaumarchaeotal abundance and composition were assessed using molecular approaches targeting 16S rRNA or amoA genes and were linked to environmental factors by correlation and canonical correspondence analysis (CCA). To evaluate the short-term responses of Thaumarchaeota to PAHs, additional soil microcosms amended with either three selected PAHs were established. Changes in thaumarchaeotal communities during the incubation were monitored.

Results and discussion

A significant correlation between thaumarchaeotal gene abundance and soil pH was observed within field samples, with the I.1a-associated group enriched when pH <5.0. CCA suggests that the community variation was primarily related to soil pH. In contrast, the effects of PAHs were minimal. In soil microcosms, high concentrations of PAHs persisted after the 4-week incubation. Independent of the PAHs added, thaumarchaeotal amoA abundance slightly increased and the compositions were stable at the end of the incubation. This might be associated with the pollutants bioavailability and potential microbe-PAH interactions in the soil.

Conclusions

Soil pH variation strongly shapes the agricultural soil thaumarchaeotal community, whereas PAH effects appear to be marginal even in the presence of high concentrations of pollutants. The complicated interaction between soil matrix, pollutants, and Thaumarchaeota requires further study.
  相似文献   
946.

Purpose

At the global scale, gardening activities are often performed in urban areas with a historical background of pollution. In this study, a participatory program was developed with citizens concerned by gardening activities near a 50-year-old regulated lead recycling company, with the aim of co-constructing the tools for the assessment and management of potential sanitary risks induced by historic pollution with persistent (eco) toxic metals: lead and cadmium.

Materials and methods

Soils and vegetables (lettuce, leek, celery, carrot, chard, pumpkin, and celeriac) samples were collected from four kitchen gardens neighboring a 50-year-old secondary lead smelter. Both total and in vitro human bioaccessible metal concentrations in the cultivated plants were measured in relation to soil characteristics.

Results and discussion

The results showed that the soils of these gardens were slightly contaminated by metals (Pb, 77 to 236 mg kg?1; and Cd, 0.5 to 1 mg kg?1) in comparison with the natural geologic background. However, significant pollution of vegetables can occur especially with lead (Pb up to 9.8 mg kg?1 in lettuce) and certainly as a result of direct foliar transfer. The washing of plants before consumption is therefore recommended in the context of atmospheric fallout of ultrafine particles enriched with metals.

Conclusions

Metal bioaccessibility measure integrates the influence of metal type, plant type, and soil physico-chemical properties. Based on the results, it is proposed that human bioaccessible fraction of metals may also be currently taken into account as well as total metal quantities and bioaccumulation factors in risk assessment studies performed in gardens. Overall, this study has led to reflections and functional recommendations aimed at reducing human exposure and to finally developing sustainable gardening practices.
  相似文献   
947.

Purpose

The present paper concerns the distribution and mobility of heavy metals (Cu, Pb, Zn and Fe) in the soils of some abandoned mine sites in Italy and their transfer to wild flora.

Materials and methods

Soils and plants were sampled from mixed sulphide mine dumps in different parts of Italy, and the concentrations of heavy metals were determined.

Results and discussion

The phytoremediation ability of Salix species (Salix eleagnos, Salix purpurea and Salix caprea), Taraxacum officinale and P?lantago major for heavy metals and, in particular, zinc was estimated. The results showed that soils affected by mining activities presented total Zn, Cu, Pb and Fe concentrations above the internationally recommended permissible limits. A highly significant correlation occurred between metal concentrations in soils.

Conclusions

The obtained results confirmed the environmental effects of mine waste; exploring wild flora ability to absorb metals, besides metal exploitation, proved a useful tool for planning possible remediation projects.
  相似文献   
948.

Purpose

The main objectives of the study were to (1) develop a one-step facile procedure for synthesizing a new chemical amendment agent with three chelating groups for solidifying multiple heavy metals, called sixthio guanidine acid (SGA), using guanidine hydrochloride and carbon disulfide as raw reactants and (2) assess its biodegradability, solidification effectiveness, and leachability in remedying soils contaminated with multiple heavy metals of various concentrations compared with other traditional amendment agents.

Materials and methods

Polluted soil samples were collected near a metalliferous mining site of Qixiashan in the southeast of Nanjing, China. Their concentrations were determined at 22.15–320 mg kg?1 for As, 3.30–29.31 mg kg?1 for Cd, 115.66–158.65 mg kg?1 for Ni, 165.04–1677.06 mg kg?1 for Pb, and 355.6–2426.91 mg kg?1 for Zn. Biodegradability of SGA was assessed in accordance with GB/T 21831-2008 and OECD-301D. Total concentration of heavy metals was determined according to ISO11466:1995. A modified three-step sequential Community Bureau of Reference (BCR) extraction procedure was used to examine speciation of heavy metals in the soil sample, and concentrations of heavy metals were measured by using inductively coupling plasma optical emission spectrometry (ICP-OES). Leachate extraction tests were carried out before and after the soil sample was solidified with different amendments in accordance with HJ/T 557-2009.

Results and discussion

It is found that the optimal conditions for SGA synthesis are a molar ratio of 4:1, a reaction temperature of 40 °C, and a reaction time of 2 h. Under such conditions, SGA yield is achieved as high as 91.5 %. The bioavailability and mobility of As, Cd, Ni, Pb, and Zn in highly contaminated soils can be reduced via using SGA. Our results indicate that SGA is nonbiodegradative and much more effective than other traditional chemical amendment agents in that it is highly effective in comprehensively solidifying As, Cd, Ni, and Pb.

Conclusions

SGA has the potential for comprehensive in situ remediation of soils contaminated with several heavy metal elements of various concentration levels, and such findings may be used as a guide to design new chemical amendment agents for rehabilitating soils contaminated with heavy metals.
  相似文献   
949.

Purpose

Soil microorganisms are important in the cycling of plant nutrients. Soil microbial biomass, community structure, and activity are mainly affected by carbon substrate and nutrient availability. The objective was to test if both the overall soil microbial community structure and the community-utilizing plant-derived carbon entering the soil as rhizodeposition were affected by soil carbon (C) and nitrogen (N) availability.

Materials and methods

A 13C-CO2 steady-state labeling experiment was conducted in a ryegrass system. Four soil treatments were established: control, amendment with carboxymethyl cellulose (CMC), amendment with ammonium nitrate (NF), combined CMC and NF. Soil phospholipid fatty acid (PLFA) and 13C labeling PLFA were extracted and detected by isotope ratio mass spectrometer.

Results and discussion

The combined CMC and NF treatment with appropriate C/N ratio (20) significantly enhanced soil microbial biomass C and N, but resulted in lower soil inorganic N concentrations. There was no significant difference in soil PLFA profile pattern between different treatments. In contrast, most of the 13C was distributed into PLFAs 18:2ω6,9c, 18:1ω7c, and 18:1ω9c, indicative of fungi and gram-negative bacteria. The inorganic-only treatment was distinct in 13C PLFA pattern from the other treatments in the first period of labeling. Factor loadings of individual PLFAs confirmed that gram-positive bacteria had relatively greater plant-derived C contents in the inorganic-only treatment, but fungi were more enriched in the other treatments.

Conclusions

Amendments with CMC can improve N transformation processes, and the ryegrass rhizodeposition carbon flux into the soil microbial community is strongly modified by soil N availability.
  相似文献   
950.

Purpose

The validity of soil erosion data is often questioned because of the variation between replicates. This paper aims to evaluate the relevance of interreplicate variability to soil and soil organic carbon (SOC) erosion over prolonged rainfall.

Materials and methods

Two silty loams were subjected to simulated rainfall of 30 mm h?1 for 360 min. The entire rainfall event was repeated ten times to enable statistical analysis of the variability of the runoff and soil erosion rates.

Results and discussion

The results show that, as selective removal of depositional particles and crust formation progressively stabilized the soil surface, the interreplicate variability of runoff and soil erosion rates declined considerably over rainfall time. Yet, even after the maximum runoff and erosion rates were reached, the interreplicate variability still remained between 15 and 39 %, indicating the existence of significant inherent variability in soil erosion experiments.

Conclusions

Great caution must be paid when applying soil and SOC erosion data after averaging from a small number of replicates. While not readily applicable to other soil types or rainfall conditions, the great interreplicate variability observed in this study suggests that a large number of replicates is highly recommended to ensure the validity of average values, especially when extrapolating them to assess soil and SOC erosion risk in the field.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号